This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub ageprocpp/competitive-programming-library
#define PROBLEM "https://judge.yosupo.jp/problem/two_sat" #include "../../graph/TwoSat.hpp" #include "../../basic/template.hpp" int N, M; int main() { scanf("p cnf %d%d", &N, &M); TwoSat ts(N + 1); rep(i, M) { int a, b; scanf("%d%d 0", &a, &b); ts.add_clause(std::abs(a), a > 0, std::abs(b), b > 0); } ts.build(); if (!ts.satisfiable()) { puts("s UNSATISFIABLE"); return 0; } puts("s SATISFIABLE"); printf("v "); auto vec = ts.answer(); REP(i, N) { printf("%d ", (vec[i] ? 1 : -1) * i); } printf("0\n"); }
#line 1 "test/yosupo/two_sat.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/two_sat" #line 2 "basic/template.hpp" #define _CRT_SECURE_NO_WARNINGS #ifndef __clang__ #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif #include <string.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cfloat> #include <chrono> #include <climits> #include <cmath> #include <complex> #include <ctime> #include <deque> #include <fstream> #include <functional> #include <iomanip> #include <iostream> #include <iterator> #include <list> #include <map> #include <memory> #include <queue> #include <random> #include <set> #include <stack> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #define rep(i, n) for (int i = 0; i < int(n); i++) #define REP(i, n) for (int i = 1; i <= int(n); i++) #define all(V) V.begin(), V.end() using i128 = __int128_t; using u128 = __uint128_t; using uint = unsigned int; using lint = long long; using ulint = unsigned long long; using IP = std::pair<int, int>; using LP = std::pair<lint, lint>; constexpr int INF = INT_MAX / 2; constexpr lint LINF = LLONG_MAX / 2; constexpr double eps = DBL_EPSILON * 10; constexpr double PI = 3.141592653589793238462643383279; template <class T> class prique : public std::priority_queue<T, std::vector<T>, std::greater<T>> {}; int popcount(uint x) { #if __cplusplus >= 202002L return std::popcount(x); #else #ifndef __clang__ return __builtin_popcount(x); #endif #endif x = (x & 0x55555555) + (x >> 1 & 0x55555555); x = (x & 0x33333333) + (x >> 2 & 0x33333333); x = (x & 0x0f0f0f0f) + (x >> 4 & 0x0f0f0f0f); x = (x & 0x00ff00ff) + (x >> 8 & 0x00ff00ff); return (x & 0x0000ffff) + (x >> 16 & 0x0000ffff); } template <class F> inline constexpr decltype(auto) lambda_fix(F&& f) { return [f = std::forward<F>(f)](auto&&... args) { return f(f, std::forward<decltype(args)>(args)...); }; } template <class T> constexpr std::vector<T> make_vec(size_t n) { return std::vector<T>(n); } template <class T, class... Args> constexpr auto make_vec(size_t n, Args&&... args) { return std::vector<decltype(make_vec<T>(args...))>(n, make_vec<T>(std::forward<Args>(args)...)); } template <class T, class U, class Stream> Stream& operator>>(Stream& ist, std::pair<T, U>& x) { return ist >> x.first >> x.second; } template <class T, class U, class Stream> Stream& operator<<(Stream& ost, const std::pair<T, U>& x) { return ost << x.first << " " << x.second; } template <class Container, std::enable_if_t<!std::is_same<Container, std::string>::value, std::nullptr_t> = nullptr> auto operator>>(std::istream& ist, Container& cont) -> decltype(typename Container::iterator(), std::cin)& { Container tmp; while (true) { typename Container::value_type t; ist >> t; tmp.emplace_back(t); if (getchar() == '\n') break; } cont = Container(std::move(tmp)); return ist; } template <class Container, class Stream, std::enable_if_t<!std::is_same<Container, std::string>::value, std::nullptr_t> = nullptr> auto operator<<(Stream& ost, const Container& cont) -> decltype(typename Container::iterator(), ost)& { for (auto it = cont.begin(); it != cont.end(); it++) { if (it != cont.begin()) ost << ' '; ost << *it; } return ost; } template <class Container> auto sum(const Container& cont) -> decltype(typename Container::iterator(), 0LL) { lint res = 0; for (auto it = cont.begin(); it != cont.end(); it++) res += *it; return res; } template <class T, class U> constexpr inline bool chmax(T& lhs, const U& rhs) noexcept { if (lhs < rhs) { lhs = rhs; return true; } return false; } template <class T, class U> constexpr inline bool chmin(T& lhs, const U& rhs) noexcept { if (lhs > rhs) { lhs = rhs; return true; } return false; } constexpr inline lint gcd(lint a, lint b) noexcept { while (b) { lint c = a; a = b; b = c % b; } return a; } inline lint lcm(lint a, lint b) noexcept { return a / gcd(a, b) * b; } constexpr bool isprime(lint n) noexcept { if (n == 1) return false; for (int i = 2; i * i <= n; i++) { if (n % i == 0) return false; } return true; } template <class T> constexpr T mypow(T a, lint b) noexcept { T res(1); while (true) { if (b & 1) res *= a; b >>= 1; if (!b) break; a *= a; } return res; } constexpr lint modpow(lint a, lint b, lint m) noexcept { a %= m; lint res(1); while (b) { if (b & 1) res *= a, res %= m; a *= a, a %= m, b >>= 1; } return res; } LP extGcd(lint a, lint b) noexcept { if (b == 0) return {1, 0}; LP s = extGcd(b, a % b); std::swap(s.first, s.second); s.second -= a / b * s.first; return s; } LP ChineseRem(const lint& b1, const lint& m1, const lint& b2, const lint& m2) noexcept { auto p = extGcd(m1, m2); lint g = gcd(m1, m2), l = m1 / g * m2; lint tmp = (b2 - b1) / g * p.first % (m2 / g); lint r = (b1 + m1 * tmp + l) % l; return {r, l}; } int LCS(const std::string& a, const std::string& b) { auto dp = make_vec<int>(a.size() + 1, b.size() + 1); rep(i, a.size()) { rep(j, b.size()) { chmax(dp[i + 1][j], dp[i][j]); chmax(dp[i][j + 1], dp[i][j]); if (a[i] == b[j]) chmax(dp[i + 1][j + 1], dp[i][j] + 1); } chmax(dp[i + 1][b.size()], dp[i][b.size()]); } rep(j, b.size()) chmax(dp[a.size()][j + 1], dp[a.size()][j]); return dp[a.size()][b.size()]; } template <class T, std::enable_if_t<std::is_convertible<int, T>::value, std::nullptr_t> = nullptr> void compress(std::vector<T>& vec) { auto tmp = vec; std::sort(all(tmp)); tmp.erase(std::unique(all(tmp)), tmp.end()); for (T& i : vec) i = std::lower_bound(all(tmp), i) - tmp.begin(); } template <class T> void compress(T* l, T* r) { std::vector<T> tmp(l, r); std::sort(all(tmp)); tmp.erase(std::unique(all(tmp)), tmp.end()); for (auto i = l; i < r; i++) { *i = std::lower_bound(all(tmp), *i) - tmp.begin(); } } template <class InputIter> void compress(InputIter l, InputIter r) { std::vector<typename InputIter::value_type> tmp(l, r); std::sort(all(tmp)); tmp.erase(std::unique(all(tmp)), tmp.end()); for (auto i = l; i < r; i++) { *i = std::lower_bound(all(tmp), *i) - tmp.begin(); } } template <class InputIter, std::enable_if_t<std::is_same<typename InputIter::value_type, std::pair<IP, int>>::value, std::nullptr_t> = nullptr> void mo_sort(InputIter l, InputIter r, int N) { const int M = std::max(1.0, std::sqrt(lint(N) * N / std::distance(l, r))); std::sort(l, r, [M](const auto& lhs, const auto& rhs) { if (lhs.first.first / M < rhs.first.first / M) return true; if (lhs.first.first / M == rhs.first.first / M) return lhs.first.second < rhs.first.second; return false; }); int before = -1, cnt = 0; bool f = false; for (InputIter i = l; i != r; i++) { if (before != i->first.first / M) { if (f) std::reverse(i - cnt, i); f ^= true, before = i->first.first / M, cnt = 1; } else cnt++; } if (f) std::reverse(r - cnt, r); } template <class T> std::vector<T> xor_bases(const std::vector<T>& vec) { std::vector<T> res; for (T i : vec) { for (T j : res) { chmin(i, i ^ j); } if (i) res.emplace_back(i); } return res; } #line 3 "graph/StronglyConnectedComponents.hpp" class StronglyConnectedComponents { int N; std::vector<std::vector<int>> vec, rvec; std::vector<std::vector<int>> scc; public: StronglyConnectedComponents() {} StronglyConnectedComponents(int N_) : N(N_) { vec.resize(N), rvec.resize(N); } void add_edge(int from, int to) { vec[from].emplace_back(to), rvec[to].emplace_back(from); } void build() { scc.clear(); std::vector<bool> used(N); std::vector<int> vs; auto dfs = lambda_fix([&](auto self, int node) -> void { used[node] = true; for (const int& i : vec[node]) { if (!used[i]) self(self, i); } vs.emplace_back(node); }); auto rdfs = lambda_fix([&](auto self, int node) -> void { used[node] = true; scc.back().emplace_back(node); for (const int& i : rvec[node]) { if (!used[i]) self(self, i); } }); rep(i, N) { if (!used[i]) dfs(i); } used.assign(N, false); for (int i = N - 1; i >= 0; i--) { if (!used[vs[i]]) { scc.emplace_back(); rdfs(vs[i]); } } } std::vector<std::vector<int>> get_scc() const { return scc; } std::vector<std::vector<int>> get_newgraph() const { std::vector<int> ids = get_ids(); std::vector<std::vector<int>> res(scc.size()); rep(i, N) { for (int j : vec[i]) res[ids[i]].emplace_back(ids[j]); } rep(i, scc.size()) std::sort(all(res[i])), res[i].erase(std::unique(all(res[i])), res[i].end()); return res; } std::vector<int> get_ids() const { std::vector<int> res(N); rep(i, scc.size()) for (const auto& j : scc[i]) res[j] = i; return res; } size_t size() const { return N; } }; /** * @title Strongly connected components */ #line 4 "graph/TwoSat.hpp" class TwoSat { int N; StronglyConnectedComponents scc; std::vector<int> ans; public: TwoSat(int N_) : N(N_), scc(2 * N_), ans(N_) {} void add_clause(int i, bool f, int j, bool g) { scc.add_edge(2 * i + int(!f), 2 * j + int(g)); scc.add_edge(2 * j + int(!g), 2 * i + int(f)); } void build() { scc.build(); } bool satisfiable() { auto ids = scc.get_ids(); rep(i, N) { if (ids[2 * i] == ids[2 * i + 1]) return false; ans[i] = ids[2 * i] < ids[2 * i + 1]; } return true; } std::vector<int> answer() { return ans; } }; /** * @title Two-sat solver */ #line 4 "test/yosupo/two_sat.test.cpp" int N, M; int main() { scanf("p cnf %d%d", &N, &M); TwoSat ts(N + 1); rep(i, M) { int a, b; scanf("%d%d 0", &a, &b); ts.add_clause(std::abs(a), a > 0, std::abs(b), b > 0); } ts.build(); if (!ts.satisfiable()) { puts("s UNSATISFIABLE"); return 0; } puts("s SATISFIABLE"); printf("v "); auto vec = ts.answer(); REP(i, N) { printf("%d ", (vec[i] ? 1 : -1) * i); } printf("0\n"); }