This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub ageprocpp/competitive-programming-library
#define PROBLEM "https://judge.yosupo.jp/problem/convolution_mod" #include "../../math/NumberTheoreticTransform.hpp" #include "../../basic/template.hpp" int n, m; std::vector<int> a, b; int main() { scanf("%d%d", &n, &m); a.resize(n); b.resize(m); rep(i, n) scanf("%d", a.data() + i); rep(i, m) scanf("%d", b.data() + i); std::vector<StaticModInt<998244353>> c = NumberTheoreticTransform::convolution<998244353>(a, b); rep(i, n + m - 1) printf((i == n + m ? "%d\n" : "%d "), c[i]); }
#line 1 "test/yosupo/convolution_mod.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/convolution_mod" #line 2 "basic/template.hpp" #define _CRT_SECURE_NO_WARNINGS #ifndef __clang__ #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif #include <string.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cfloat> #include <chrono> #include <climits> #include <cmath> #include <complex> #include <ctime> #include <deque> #include <fstream> #include <functional> #include <iomanip> #include <iostream> #include <iterator> #include <list> #include <map> #include <memory> #include <queue> #include <random> #include <set> #include <stack> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #define rep(i, n) for (int i = 0; i < int(n); i++) #define REP(i, n) for (int i = 1; i <= int(n); i++) #define all(V) V.begin(), V.end() using i128 = __int128_t; using u128 = __uint128_t; using uint = unsigned int; using lint = long long; using ulint = unsigned long long; using IP = std::pair<int, int>; using LP = std::pair<lint, lint>; constexpr int INF = INT_MAX / 2; constexpr lint LINF = LLONG_MAX / 2; constexpr double eps = DBL_EPSILON * 10; constexpr double PI = 3.141592653589793238462643383279; template <class T> class prique : public std::priority_queue<T, std::vector<T>, std::greater<T>> {}; int popcount(uint x) { #if __cplusplus >= 202002L return std::popcount(x); #else #ifndef __clang__ return __builtin_popcount(x); #endif #endif x = (x & 0x55555555) + (x >> 1 & 0x55555555); x = (x & 0x33333333) + (x >> 2 & 0x33333333); x = (x & 0x0f0f0f0f) + (x >> 4 & 0x0f0f0f0f); x = (x & 0x00ff00ff) + (x >> 8 & 0x00ff00ff); return (x & 0x0000ffff) + (x >> 16 & 0x0000ffff); } template <class F> inline constexpr decltype(auto) lambda_fix(F&& f) { return [f = std::forward<F>(f)](auto&&... args) { return f(f, std::forward<decltype(args)>(args)...); }; } template <class T> constexpr std::vector<T> make_vec(size_t n) { return std::vector<T>(n); } template <class T, class... Args> constexpr auto make_vec(size_t n, Args&&... args) { return std::vector<decltype(make_vec<T>(args...))>(n, make_vec<T>(std::forward<Args>(args)...)); } template <class T, class U, class Stream> Stream& operator>>(Stream& ist, std::pair<T, U>& x) { return ist >> x.first >> x.second; } template <class T, class U, class Stream> Stream& operator<<(Stream& ost, const std::pair<T, U>& x) { return ost << x.first << " " << x.second; } template <class Container, std::enable_if_t<!std::is_same<Container, std::string>::value, std::nullptr_t> = nullptr> auto operator>>(std::istream& ist, Container& cont) -> decltype(typename Container::iterator(), std::cin)& { Container tmp; while (true) { typename Container::value_type t; ist >> t; tmp.emplace_back(t); if (getchar() == '\n') break; } cont = Container(std::move(tmp)); return ist; } template <class Container, class Stream, std::enable_if_t<!std::is_same<Container, std::string>::value, std::nullptr_t> = nullptr> auto operator<<(Stream& ost, const Container& cont) -> decltype(typename Container::iterator(), ost)& { for (auto it = cont.begin(); it != cont.end(); it++) { if (it != cont.begin()) ost << ' '; ost << *it; } return ost; } template <class Container> auto sum(const Container& cont) -> decltype(typename Container::iterator(), 0LL) { lint res = 0; for (auto it = cont.begin(); it != cont.end(); it++) res += *it; return res; } template <class T, class U> constexpr inline bool chmax(T& lhs, const U& rhs) noexcept { if (lhs < rhs) { lhs = rhs; return true; } return false; } template <class T, class U> constexpr inline bool chmin(T& lhs, const U& rhs) noexcept { if (lhs > rhs) { lhs = rhs; return true; } return false; } constexpr inline lint gcd(lint a, lint b) noexcept { while (b) { lint c = a; a = b; b = c % b; } return a; } inline lint lcm(lint a, lint b) noexcept { return a / gcd(a, b) * b; } constexpr bool isprime(lint n) noexcept { if (n == 1) return false; for (int i = 2; i * i <= n; i++) { if (n % i == 0) return false; } return true; } template <class T> constexpr T mypow(T a, lint b) noexcept { T res(1); while (true) { if (b & 1) res *= a; b >>= 1; if (!b) break; a *= a; } return res; } constexpr lint modpow(lint a, lint b, lint m) noexcept { a %= m; lint res(1); while (b) { if (b & 1) res *= a, res %= m; a *= a, a %= m, b >>= 1; } return res; } LP extGcd(lint a, lint b) noexcept { if (b == 0) return {1, 0}; LP s = extGcd(b, a % b); std::swap(s.first, s.second); s.second -= a / b * s.first; return s; } LP ChineseRem(const lint& b1, const lint& m1, const lint& b2, const lint& m2) noexcept { auto p = extGcd(m1, m2); lint g = gcd(m1, m2), l = m1 / g * m2; lint tmp = (b2 - b1) / g * p.first % (m2 / g); lint r = (b1 + m1 * tmp + l) % l; return {r, l}; } int LCS(const std::string& a, const std::string& b) { auto dp = make_vec<int>(a.size() + 1, b.size() + 1); rep(i, a.size()) { rep(j, b.size()) { chmax(dp[i + 1][j], dp[i][j]); chmax(dp[i][j + 1], dp[i][j]); if (a[i] == b[j]) chmax(dp[i + 1][j + 1], dp[i][j] + 1); } chmax(dp[i + 1][b.size()], dp[i][b.size()]); } rep(j, b.size()) chmax(dp[a.size()][j + 1], dp[a.size()][j]); return dp[a.size()][b.size()]; } template <class T, std::enable_if_t<std::is_convertible<int, T>::value, std::nullptr_t> = nullptr> void compress(std::vector<T>& vec) { auto tmp = vec; std::sort(all(tmp)); tmp.erase(std::unique(all(tmp)), tmp.end()); for (T& i : vec) i = std::lower_bound(all(tmp), i) - tmp.begin(); } template <class T> void compress(T* l, T* r) { std::vector<T> tmp(l, r); std::sort(all(tmp)); tmp.erase(std::unique(all(tmp)), tmp.end()); for (auto i = l; i < r; i++) { *i = std::lower_bound(all(tmp), *i) - tmp.begin(); } } template <class InputIter> void compress(InputIter l, InputIter r) { std::vector<typename InputIter::value_type> tmp(l, r); std::sort(all(tmp)); tmp.erase(std::unique(all(tmp)), tmp.end()); for (auto i = l; i < r; i++) { *i = std::lower_bound(all(tmp), *i) - tmp.begin(); } } template <class InputIter, std::enable_if_t<std::is_same<typename InputIter::value_type, std::pair<IP, int>>::value, std::nullptr_t> = nullptr> void mo_sort(InputIter l, InputIter r, int N) { const int M = std::max(1.0, std::sqrt(lint(N) * N / std::distance(l, r))); std::sort(l, r, [M](const auto& lhs, const auto& rhs) { if (lhs.first.first / M < rhs.first.first / M) return true; if (lhs.first.first / M == rhs.first.first / M) return lhs.first.second < rhs.first.second; return false; }); int before = -1, cnt = 0; bool f = false; for (InputIter i = l; i != r; i++) { if (before != i->first.first / M) { if (f) std::reverse(i - cnt, i); f ^= true, before = i->first.first / M, cnt = 1; } else cnt++; } if (f) std::reverse(r - cnt, r); } template <class T> std::vector<T> xor_bases(const std::vector<T>& vec) { std::vector<T> res; for (T i : vec) { for (T j : res) { chmin(i, i ^ j); } if (i) res.emplace_back(i); } return res; } #line 3 "basic/type_traits.hpp" class ModInt__Base {}; class StaticModInt__Base : ModInt__Base {}; class DynamicModInt__Base : ModInt__Base {}; template <class T> class is_ModInt : public std::is_base_of<ModInt__Base, T> {}; template <class T> constexpr bool is_ModInt_v = is_ModInt<T>::value; template <class T> class is_StaticModInt : public std::is_base_of<StaticModInt__Base, T> {}; template <class T> constexpr bool is_StaticModInt_v = is_StaticModInt<T>::value; template <class T> class is_DynamicModInt : public std::is_base_of<DynamicModInt__Base, T> {}; template <class T> constexpr bool is_DynamicModInt_v = is_DynamicModInt<T>::value; #line 4 "math/StaticModInt.hpp" template <int modulo> class StaticModInt : StaticModInt__Base { uint value; static constexpr int inv1000000007[] = {0, 1, 500000004, 333333336, 250000002, 400000003, 166666668, 142857144, 125000001, 111111112, 700000005}, inv998244353[] = {0, 1, 499122177, 332748118, 748683265, 598946612, 166374059, 855638017, 873463809, 443664157, 299473306}; public: static constexpr int mod_value = modulo; constexpr StaticModInt() : value(0) {} template <class T, std::enable_if_t<!std::is_convertible<T, StaticModInt>::value, std::nullptr_t> = nullptr> constexpr StaticModInt(T value = 0) : value(value % modulo) { if (this->value < 0) this->value += modulo; } inline constexpr StaticModInt inv() const { if constexpr (modulo == 1000000007) { if (*this <= 10) return inv1000000007[*this]; } else if constexpr (modulo == 998244353) { if (*this <= 10) return inv998244353[*this]; } return mypow(*this, modulo - 2); } inline constexpr StaticModInt pow(lint k) const { return mypow(*this, k); } inline constexpr operator int() const { return value; } inline constexpr StaticModInt& operator+=(const StaticModInt& x) { value = value + x.value; if (value >= modulo) value -= modulo; return *this; } inline constexpr StaticModInt& operator++() { if (value == modulo - 1) value = 0; else value++; return *this; } inline constexpr StaticModInt operator++(int) { StaticModInt res = *this; ++*this; return res; } inline constexpr StaticModInt operator-() const { return StaticModInt(0) -= *this; } inline constexpr StaticModInt& operator-=(const StaticModInt& x) { if (value < x.value) value += modulo; value -= x.value; return *this; } inline constexpr StaticModInt& operator--() { if (value == 0) value = modulo - 1; else value--; return *this; } inline constexpr StaticModInt operator--(int) { StaticModInt res = *this; --*this; return res; } inline constexpr StaticModInt& operator*=(const StaticModInt& x) { value = (ulint)value * x.value % modulo; return *this; } inline constexpr StaticModInt& operator/=(const StaticModInt& rhs) { return *this *= rhs.inv(); } template <class T> constexpr StaticModInt operator+(const T& rhs) const { return StaticModInt(*this) += rhs; } template <class T> constexpr StaticModInt& operator+=(const T& rhs) { return operator+=(StaticModInt(rhs)); } template <class T> constexpr StaticModInt operator-(const T& rhs) const { return StaticModInt(*this) -= rhs; } template <class T> constexpr StaticModInt& operator-=(const T& rhs) { return operator-=(StaticModInt(rhs)); } template <class T> constexpr StaticModInt operator*(const T& rhs) const { return StaticModInt(*this) *= rhs; } template <class T> constexpr StaticModInt& operator*=(const T& rhs) { return operator*=(StaticModInt(rhs)); } template <class T> constexpr StaticModInt operator/(const T& rhs) const { return StaticModInt(*this) /= rhs; } template <class T> constexpr StaticModInt& operator/=(const T& rhs) { return operator/=(StaticModInt(rhs)); } static StaticModInt primitive_root() { if constexpr (modulo == 1012924417) return 5; if constexpr (modulo == 924844033) return 5; if constexpr (modulo == 998244353) return 3; if constexpr (modulo == 1224736769) return 3; if constexpr (modulo == 167772161) return 3; if constexpr (modulo == 469762049) return 3; if constexpr (modulo == 1107296257) return 10; int p = 0; std::mt19937 mt(0); std::uniform_int_distribution<> uid(1, modulo - 1); if (p) return p; // use naive factorize due to file size limit std::vector<int> vec; int tmp = modulo - 1; for (int i = 2; i * i <= tmp; i++) { if (tmp % i == 0) { vec.emplace_back(i); do { tmp /= i; } while (tmp % i == 0); } } if (tmp != 1) vec.emplace_back(tmp); while (true) { p = uid(mt); bool f = true; for (const auto& i : vec) { if (mypow(StaticModInt(p), (modulo - 1) / i) == 1) { f = false; break; } } if (f) return p; } } }; template <int modulo, class Stream> Stream& operator>>(Stream& ist, StaticModInt<modulo>& x) { lint a; ist >> a; x = a; return ist; } template <int modulo, class Stream> Stream& operator<<(Stream& ost, const StaticModInt<modulo>& x) { ost << int(x); return ost; } #if __cplusplus < 201703L template <int modulo> constexpr int StaticModInt<modulo>::inv1000000007[]; template <int modulo> constexpr int StaticModInt<modulo>::inv998244353[]; #endif /** * @title StaticModInt */ #line 4 "math/NumberTheoreticTransform.hpp" // 1012924417, 5, 2^21 // 924844033, 5, 2^21 // 998244353, 3, 2^23 // 1224736769, 3, 2^24 // 167772161, 3, 2^25 // 1107296257, 10, 2^25 // 469762049, 3, 2^26 class NumberTheoreticTransform { static int constexpr friendly_limit(int p) { return __builtin_ffs(p - 1) - 1; } public: template <int modulo> static void ntt(std::vector<StaticModInt<modulo>>& a, bool inverse, int size = -1) { // size should be one of powers of two if (size == -1) size = a.size(); if (size == 1) return; a.resize(size); const StaticModInt<modulo> root = StaticModInt<modulo>::primitive_root().pow( inverse ? modulo - 1 - (modulo - 1) / size : (modulo - 1) / size); std::vector<StaticModInt<modulo>> b(size); StaticModInt<modulo> r_p = root; for (int i = size >> 1, w = 1; w < size; i >>= 1, w <<= 1) { StaticModInt<modulo> r_pp = 1; for (int j = 0; j < i; j++, r_pp *= r_p) { for (int k = 0; k < w; k++) { b[k + ((w * j) << 1)] = a[k + w * j] + a[k + w * j + (size >> 1)]; b[k + ((w * j) << 1) + w] = r_pp * (a[k + w * j] - a[k + w * j + (size >> 1)]); } } std::swap(a, b); r_p *= r_p; } } private: template <class T, int modulo> static std::vector<StaticModInt<modulo>> internal_convolution(const std::vector<T>& f_, const std::vector<T>& g_) { std::vector<StaticModInt<modulo>> f(f_.size()), g(g_.size()); rep(i, f_.size()) f[i] = f_[i]; rep(i, g_.size()) g[i] = g_[i]; return internal_convolution(std::move(f), std::move(g)); } template <int modulo> static std::vector<StaticModInt<modulo>> internal_convolution( const std::vector<StaticModInt<modulo>>& f, const std::vector<StaticModInt<modulo>>& g) { auto f_ = f, g_ = g; return internal_convolution(std::move(f_), std::move(g_)); } template <int modulo> static std::vector<StaticModInt<modulo>> internal_convolution( const std::vector<StaticModInt<modulo>>& f, std::vector<StaticModInt<modulo>>&& g) { auto f_ = f; return internal_convolution(std::move(f_), std::move(g)); } template <int modulo> static std::vector<StaticModInt<modulo>> internal_convolution( std::vector<StaticModInt<modulo>>& f, const std::vector<StaticModInt<modulo>>&& g) { auto g_ = g; return internal_convolution(std::move(f), std::move(g_)); } template <int modulo> static std::vector<StaticModInt<modulo>> internal_convolution( std::vector<StaticModInt<modulo>>&& f, std::vector<StaticModInt<modulo>>&& g) { size_t target_size = f.size() + g.size() - 1, sz = 1; while (sz < target_size) sz <<= 1; f.resize(sz), g.resize(sz); ntt(f, false), ntt(g, false); rep(i, f.size()) f[i] *= g[i]; ntt(f, true); StaticModInt<modulo> inv = StaticModInt<modulo>(sz).inv(); rep(i, f.size()) f[i] *= inv; f.resize(target_size); return std::move(f); } public: template <int modulo> static std::vector<StaticModInt<modulo>> convolution( const std::vector<StaticModInt<modulo>>& f, const std::vector<StaticModInt<modulo>>& g) { if (1 << friendly_limit(modulo) >= f.size() + g.size() - 1) { auto f_ = f, g_ = g; return internal_convolution<modulo>(std::move(f_), std::move(g_)); } else if (1 << friendly_limit(modulo) + 2 >= f.size() + g.size() - 1) { int sz = 1 << friendly_limit(modulo) - 1; std::vector<std::vector<StaticModInt<modulo>>> f_, g_; for (int i = 0; i * sz < f.size(); i++) f_.emplace_back(f.begin() + i * sz, f.begin() + std::min((int)f.size(), (i + 1) * sz)); for (int i = 0; i * sz < g.size(); i++) g_.emplace_back(g.begin() + i * sz, g.begin() + std::min((int)g.size(), (i + 1) * sz)); std::vector<StaticModInt<modulo>> res(f.size() + g.size() - 1); rep(i, f_.size()) { rep(j, g_.size()) { auto tmp = internal_convolution<modulo>(j == g_.size() - 1 ? std::move(f_[i]) : f_[i], i == f_.size() - 1 ? std::move(g_[j]) : g_[j]); rep(k, tmp.size()) res[(i + j) * sz + k] += tmp[k]; } } return res; } constexpr int base1 = 167772161, base2 = 1107296257, base3 = 469762049; auto re1 = internal_convolution<StaticModInt<modulo>, base1>(f, g); auto re2 = internal_convolution<StaticModInt<modulo>, base2>(f, g); auto re3 = internal_convolution<StaticModInt<modulo>, base3>(f, g); std::vector<StaticModInt<modulo>> res(re1.size()); constexpr int r12 = StaticModInt<base2>(base1).inv(); constexpr int r13 = StaticModInt<base3>(base1).inv(); constexpr int r23 = StaticModInt<base3>(base2).inv(); rep(i, re1.size()) { re2[i] = StaticModInt<base2>(re2[i] - re1[i]) * r12; re3[i] = (StaticModInt<base3>(re3[i] - re1[i]) * r13 - re2[i]) * r23; res[i] = StaticModInt<modulo>(re1[i]) + StaticModInt<modulo>(re2[i]) * base1 + StaticModInt<modulo>(re3[i]) * base1 * base2; } return res; } template <int modulo, class T> static std::vector<StaticModInt<modulo>> convolution(const std::vector<T>& f, const std::vector<T>& g) { std::vector<StaticModInt<modulo>> f_(f.size()), g_(g.size()); rep(i, f.size()) f_[i] = f[i]; rep(i, g.size()) g_[i] = g[i]; return convolution(f_, g_); } template <class T> static std::vector<lint> convolution_plain(const std::vector<T>& f, const std::vector<T>& g) { const int mod1 = 998244353, mod2 = 1224736769; std::vector<StaticModInt<mod1>> mul1 = internal_convolution<T, mod1>(f, g); std::vector<StaticModInt<mod2>> mul2 = internal_convolution<T, mod2>(f, g); std::vector<lint> res(mul1.size()); rep(i, mul1.size()) res[i] = ChineseRem(mul1[i], mod1, mul2[i], mod2).first; return res; } }; /** * @title NumberTheoreticTransform */ #line 4 "test/yosupo/convolution_mod.test.cpp" int n, m; std::vector<int> a, b; int main() { scanf("%d%d", &n, &m); a.resize(n); b.resize(m); rep(i, n) scanf("%d", a.data() + i); rep(i, m) scanf("%d", b.data() + i); std::vector<StaticModInt<998244353>> c = NumberTheoreticTransform::convolution<998244353>(a, b); rep(i, n + m - 1) printf((i == n + m ? "%d\n" : "%d "), c[i]); }