This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub ageprocpp/competitive-programming-library
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/CGL_1_A" #define ERROR "1e-8" #include "../../basic/template.hpp" #include "../../math/Geometry.hpp" int main() { int x1, y1, x2, y2; std::cin >> x1 >> y1 >> x2 >> y2; Line2D l(Point2D(x1, y1), Point2D(x2, y2)); int q; std::cin >> q; rep(i, q) { int x, y; std::cin >> x >> y; std::cout << std::fixed << std::setprecision(12) << projection(l, Point2D(x, y)) << std::endl; } }
#line 1 "test/aoj/CGL_1_A.test.cpp" #define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/CGL_1_A" #define ERROR "1e-8" #line 2 "basic/template.hpp" #define _CRT_SECURE_NO_WARNINGS #ifndef __clang__ #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif #include <string.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cfloat> #include <chrono> #include <climits> #include <cmath> #include <complex> #include <ctime> #include <deque> #include <fstream> #include <functional> #include <iomanip> #include <iostream> #include <iterator> #include <list> #include <map> #include <memory> #include <queue> #include <random> #include <set> #include <stack> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #define rep(i, n) for (int i = 0; i < int(n); i++) #define REP(i, n) for (int i = 1; i <= int(n); i++) #define all(V) V.begin(), V.end() using i128 = __int128_t; using u128 = __uint128_t; using uint = unsigned int; using lint = long long; using ulint = unsigned long long; using IP = std::pair<int, int>; using LP = std::pair<lint, lint>; constexpr int INF = INT_MAX / 2; constexpr lint LINF = LLONG_MAX / 2; constexpr double eps = DBL_EPSILON * 10; constexpr double PI = 3.141592653589793238462643383279; template <class T> class prique : public std::priority_queue<T, std::vector<T>, std::greater<T>> {}; int popcount(uint x) { #if __cplusplus >= 202002L return std::popcount(x); #else #ifndef __clang__ return __builtin_popcount(x); #endif #endif x = (x & 0x55555555) + (x >> 1 & 0x55555555); x = (x & 0x33333333) + (x >> 2 & 0x33333333); x = (x & 0x0f0f0f0f) + (x >> 4 & 0x0f0f0f0f); x = (x & 0x00ff00ff) + (x >> 8 & 0x00ff00ff); return (x & 0x0000ffff) + (x >> 16 & 0x0000ffff); } template <class F> inline constexpr decltype(auto) lambda_fix(F&& f) { return [f = std::forward<F>(f)](auto&&... args) { return f(f, std::forward<decltype(args)>(args)...); }; } template <class T> constexpr std::vector<T> make_vec(size_t n) { return std::vector<T>(n); } template <class T, class... Args> constexpr auto make_vec(size_t n, Args&&... args) { return std::vector<decltype(make_vec<T>(args...))>(n, make_vec<T>(std::forward<Args>(args)...)); } template <class T, class U, class Stream> Stream& operator>>(Stream& ist, std::pair<T, U>& x) { return ist >> x.first >> x.second; } template <class T, class U, class Stream> Stream& operator<<(Stream& ost, const std::pair<T, U>& x) { return ost << x.first << " " << x.second; } template <class Container, std::enable_if_t<!std::is_same<Container, std::string>::value, std::nullptr_t> = nullptr> auto operator>>(std::istream& ist, Container& cont) -> decltype(typename Container::iterator(), std::cin)& { Container tmp; while (true) { typename Container::value_type t; ist >> t; tmp.emplace_back(t); if (getchar() == '\n') break; } cont = Container(std::move(tmp)); return ist; } template <class Container, class Stream, std::enable_if_t<!std::is_same<Container, std::string>::value, std::nullptr_t> = nullptr> auto operator<<(Stream& ost, const Container& cont) -> decltype(typename Container::iterator(), ost)& { for (auto it = cont.begin(); it != cont.end(); it++) { if (it != cont.begin()) ost << ' '; ost << *it; } return ost; } template <class Container> auto sum(const Container& cont) -> decltype(typename Container::iterator(), 0LL) { lint res = 0; for (auto it = cont.begin(); it != cont.end(); it++) res += *it; return res; } template <class T, class U> constexpr inline bool chmax(T& lhs, const U& rhs) noexcept { if (lhs < rhs) { lhs = rhs; return true; } return false; } template <class T, class U> constexpr inline bool chmin(T& lhs, const U& rhs) noexcept { if (lhs > rhs) { lhs = rhs; return true; } return false; } constexpr inline lint gcd(lint a, lint b) noexcept { while (b) { lint c = a; a = b; b = c % b; } return a; } inline lint lcm(lint a, lint b) noexcept { return a / gcd(a, b) * b; } constexpr bool isprime(lint n) noexcept { if (n == 1) return false; for (int i = 2; i * i <= n; i++) { if (n % i == 0) return false; } return true; } template <class T> constexpr T mypow(T a, lint b) noexcept { T res(1); while (true) { if (b & 1) res *= a; b >>= 1; if (!b) break; a *= a; } return res; } constexpr lint modpow(lint a, lint b, lint m) noexcept { a %= m; lint res(1); while (b) { if (b & 1) res *= a, res %= m; a *= a, a %= m, b >>= 1; } return res; } LP extGcd(lint a, lint b) noexcept { if (b == 0) return {1, 0}; LP s = extGcd(b, a % b); std::swap(s.first, s.second); s.second -= a / b * s.first; return s; } LP ChineseRem(const lint& b1, const lint& m1, const lint& b2, const lint& m2) noexcept { auto p = extGcd(m1, m2); lint g = gcd(m1, m2), l = m1 / g * m2; lint tmp = (b2 - b1) / g * p.first % (m2 / g); lint r = (b1 + m1 * tmp + l) % l; return {r, l}; } int LCS(const std::string& a, const std::string& b) { auto dp = make_vec<int>(a.size() + 1, b.size() + 1); rep(i, a.size()) { rep(j, b.size()) { chmax(dp[i + 1][j], dp[i][j]); chmax(dp[i][j + 1], dp[i][j]); if (a[i] == b[j]) chmax(dp[i + 1][j + 1], dp[i][j] + 1); } chmax(dp[i + 1][b.size()], dp[i][b.size()]); } rep(j, b.size()) chmax(dp[a.size()][j + 1], dp[a.size()][j]); return dp[a.size()][b.size()]; } template <class T, std::enable_if_t<std::is_convertible<int, T>::value, std::nullptr_t> = nullptr> void compress(std::vector<T>& vec) { auto tmp = vec; std::sort(all(tmp)); tmp.erase(std::unique(all(tmp)), tmp.end()); for (T& i : vec) i = std::lower_bound(all(tmp), i) - tmp.begin(); } template <class T> void compress(T* l, T* r) { std::vector<T> tmp(l, r); std::sort(all(tmp)); tmp.erase(std::unique(all(tmp)), tmp.end()); for (auto i = l; i < r; i++) { *i = std::lower_bound(all(tmp), *i) - tmp.begin(); } } template <class InputIter> void compress(InputIter l, InputIter r) { std::vector<typename InputIter::value_type> tmp(l, r); std::sort(all(tmp)); tmp.erase(std::unique(all(tmp)), tmp.end()); for (auto i = l; i < r; i++) { *i = std::lower_bound(all(tmp), *i) - tmp.begin(); } } template <class InputIter, std::enable_if_t<std::is_same<typename InputIter::value_type, std::pair<IP, int>>::value, std::nullptr_t> = nullptr> void mo_sort(InputIter l, InputIter r, int N) { const int M = std::max(1.0, std::sqrt(lint(N) * N / std::distance(l, r))); std::sort(l, r, [M](const auto& lhs, const auto& rhs) { if (lhs.first.first / M < rhs.first.first / M) return true; if (lhs.first.first / M == rhs.first.first / M) return lhs.first.second < rhs.first.second; return false; }); int before = -1, cnt = 0; bool f = false; for (InputIter i = l; i != r; i++) { if (before != i->first.first / M) { if (f) std::reverse(i - cnt, i); f ^= true, before = i->first.first / M, cnt = 1; } else cnt++; } if (f) std::reverse(r - cnt, r); } template <class T> std::vector<T> xor_bases(const std::vector<T>& vec) { std::vector<T> res; for (T i : vec) { for (T j : res) { chmin(i, i ^ j); } if (i) res.emplace_back(i); } return res; } #line 2 "math/Geometry.hpp" static bool equal(double lhs, double rhs) { return std::abs(lhs - rhs) < eps; } class Point2D : public std::complex<double> { using C = std::complex<double>; public: Point2D() = default; Point2D(double x, double y) : C(x, y) {} Point2D(const std::complex<double>& c) : C(c) {} Point2D(std::complex<double>&& c) : C(c) {} double get_x() const { return real(); } double get_y() const { return imag(); } double abs() const { return std::abs(*this); } bool equals(const Point2D& x) { return equal(real(), x.real()) && equal(imag(), x.imag()); } Point2D unit() const { return Point2D(*this / abs()); } Point2D normal() const { return *this * std::complex<double>(0, 1); } friend double dot(const Point2D& lhs, const Point2D& rhs); friend double cross(const Point2D& lhs, const Point2D& rhs); friend Point2D rotate(const Point2D& p, double theta); }; double dot(const Point2D& lhs, const Point2D& rhs) { return lhs.real() * rhs.real() + lhs.imag() * rhs.imag(); } double cross(const Point2D& lhs, const Point2D& rhs) { return lhs.real() * rhs.imag() - lhs.imag() * rhs.real(); } Point2D rotate(const Point2D& p, double theta) { return Point2D(p * std::polar(1.0, theta)); } class Line2D { protected: Point2D s, t; public: Line2D() = default; Line2D(const Point2D& s_, const Point2D& t_) : s(s_), t(t_) {} Line2D(double A, double B, double C) { if (equal(A, 0)) s = Point2D(0, C / B), t = Point2D(1, C / B); else if (equal(B, 0)) s = Point2D(C / A, 0), t = Point2D(C / A, 1); else s = Point2D(0, C / B), t = Point2D(C / A, 0); } friend Point2D projection(const Line2D& l, const Point2D& p); friend bool is_orthogonal(const Line2D& a, const Line2D& b); friend bool is_parallel(const Line2D& a, const Line2D& b); friend Point2D cross_point(const Line2D& a, const Line2D& b); }; class Segment2D : public Line2D { public: Segment2D() = default; Segment2D(const Point2D& s, const Point2D& t) : Line2D(s, t) {} friend bool is_intersect(const Segment2D& a, const Segment2D& b); friend double distance(const Segment2D& l, const Point2D& p); friend double distance(const Segment2D& a, const Segment2D& b); }; class Circle2D { Point2D p; double r; public: Circle2D() = default; Circle2D(const Point2D& p_, double r_) : p(p_), r(r_) {} }; Point2D projection(const Line2D& l, const Point2D& p) { double t = dot(p - l.s, l.s - l.t) / std::norm(l.s - l.t); return l.s + (l.s - l.t) * t; } Point2D reflection(const Line2D& l, const Point2D& p) { return p + (projection(l, p) - p) * 2.0; } // 1: COUNTER_CLOCKWISE // -1: CLOCKWISE // 2: ONLine2D_BACK // -2: ONLine2D_FRONT // 0: ON_Segment2D int counter_clockwise(const Point2D& a, Point2D b, Point2D c) { b -= a, c -= a; if (cross(b, c) > eps) return 1; if (cross(b, c) < -eps) return -1; if (dot(b, c) < 0) return 2; if (std::norm(b) < std::norm(c)) return -2; return 0; } bool is_orthogonal(const Line2D& a, const Line2D& b) { return equal(dot(a.t - a.s, b.t - b.s), 0); } bool is_parallel(const Line2D& a, const Line2D& b) { return equal(cross(a.t - a.s, b.t - b.s), 0); } bool is_intersect(const Segment2D& a, const Segment2D& b) { return counter_clockwise(a.s, a.t, b.s) * counter_clockwise(a.s, a.t, b.t) <= 0 && counter_clockwise(b.s, b.t, a.s) * counter_clockwise(b.s, b.t, a.t) <= 0; } Point2D cross_point(const Line2D& a, const Line2D& b) { double d1 = cross(a.t - a.s, b.t - b.s); double d2 = cross(a.t - a.s, a.t - b.s); if (equal(std::abs(d1), 0) && equal(std::abs(d2), 0)) return a.s; return b.s + (b.t - b.s) * (d2 / d1); } double distance(const Point2D& x, const Point2D& y) { return std::abs(x - y); } double distance(const Segment2D& l, const Point2D& p) { if (dot(l.t - l.s, p - l.s) < eps) return std::abs(p - l.s); if (dot(l.s - l.t, p - l.t) < eps) return std::abs(p - l.t); return std::abs(cross(l.t - l.s, p - l.s) / (l.t - l.s)); } double distance(const Segment2D& a, const Segment2D& b) { if (is_intersect(a, b)) return 0; double ans = distance(a, b.s); chmin(ans, distance(a, b.t)); chmin(ans, distance(b, a.s)); chmin(ans, distance(b, a.t)); return ans; } double polygon_area(const std::vector<Point2D>& v) { double res = cross(v.back(), v[0]); rep(i, v.size() - 1) res += cross(v[i], v[i + 1]); return res * 0.5; } bool is_convex(const std::vector<Point2D>& v) { const int n = v.size(); if (counter_clockwise(v[n - 1], v[0], v[1]) == -1) return false; if (counter_clockwise(v[n - 2], v[n - 1], v[0]) == -1) return false; rep(i, n - 2) { if (counter_clockwise(v[i], v[i + 1], v[i + 2]) == -1) return false; } return true; } int is_contained(const std::vector<Point2D>& v, const Point2D& p) { bool in = false; rep(i, v.size()) { Point2D a = v[i] - p, b = v[i == v.size() - 1 ? 0 : i + 1] - p; if (a.get_y() > b.get_y()) std::swap(a, b); if (a.get_y() < eps && eps < b.get_y() && cross(a, b) < -eps) in ^= true; if (cross(a, b) == 0 && dot(a, b) <= 0) return 1; } return in ? 2 : 0; } std::vector<Point2D> convex_hull(std::vector<Point2D> p) { int n = p.size(), k = 0; std::sort(all(p), [](const Point2D& a, const Point2D& b) { return a.get_x() != b.get_x() ? a.get_x() < b.get_x() : a.get_y() < b.get_y(); }); std::vector<Point2D> res(2 * n); for (int i = 0; i < n; res[k++] = p[i++]) { while (k >= 2 && cross(res[k - 1] - res[k - 2], p[i] - res[k - 1]) < -eps) k--; } for (int i = n - 2, t = k + 1; i >= 0; res[k++] = p[i--]) { while (k >= t && cross(res[k - 1] - res[k - 2], p[i] - res[k - 1]) < -eps) k--; } res.resize(k - 1); return res; } double convex_polygon_diameter(const std::vector<Point2D>& p) { int cur = 0; double res = 0; rep(i, p.size()) { double cur_dist = distance(p[i], p[cur]), nxt_dist; while (true) { nxt_dist = distance(p[i], p[cur + 1 == p.size() ? 0 : cur + 1]); if (cur_dist > nxt_dist) break; cur_dist = nxt_dist; cur = cur + 1 == p.size() ? 0 : cur + 1; } chmax(res, cur_dist); } return res; } std::istream& operator>>(std::istream& ist, Point2D& p) { double x, y; ist >> x >> y; p = Point2D(x, y); return ist; } std::ostream& operator<<(std::ostream& ost, const Point2D& p) { ost << p.get_x() << ' ' << p.get_y(); return ost; } #line 5 "test/aoj/CGL_1_A.test.cpp" int main() { int x1, y1, x2, y2; std::cin >> x1 >> y1 >> x2 >> y2; Line2D l(Point2D(x1, y1), Point2D(x2, y2)); int q; std::cin >> q; rep(i, q) { int x, y; std::cin >> x >> y; std::cout << std::fixed << std::setprecision(12) << projection(l, Point2D(x, y)) << std::endl; } }