This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub ageprocpp/competitive-programming-library
#include "data-structure/RBSTset.hpp"
#pragma once #include "../basic/template.hpp" #include "RBST.hpp" template <class T> class RBSTset { RBST<int> rbst; public: RBSTset() {} const T& quantile(int idx) const { return rbst.find(idx); } bool contains(const T& val) const { return rbst.lower_bound(val) != rbst.upper_bound(val); } void insert(const T& val) { rbst.insert(rbst.lower_bound(val), val); } void erase(const T& val) { rbst.erase(rbst.lower_bound(val)); } void clear() { rbst.clear(); } int size() const { return rbst.size(); } bool empty() const { return rbst.empty(); } }; /** * @title Set based on Randomized Binary Search Tree */
#line 2 "basic/template.hpp" #define _CRT_SECURE_NO_WARNINGS #ifndef __clang__ #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif #include <string.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cfloat> #include <chrono> #include <climits> #include <cmath> #include <complex> #include <ctime> #include <deque> #include <fstream> #include <functional> #include <iomanip> #include <iostream> #include <iterator> #include <list> #include <map> #include <memory> #include <queue> #include <random> #include <set> #include <stack> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #define rep(i, n) for (int i = 0; i < int(n); i++) #define REP(i, n) for (int i = 1; i <= int(n); i++) #define all(V) V.begin(), V.end() using i128 = __int128_t; using u128 = __uint128_t; using uint = unsigned int; using lint = long long; using ulint = unsigned long long; using IP = std::pair<int, int>; using LP = std::pair<lint, lint>; constexpr int INF = INT_MAX / 2; constexpr lint LINF = LLONG_MAX / 2; constexpr double eps = DBL_EPSILON * 10; constexpr double PI = 3.141592653589793238462643383279; template <class T> class prique : public std::priority_queue<T, std::vector<T>, std::greater<T>> {}; int popcount(uint x) { #if __cplusplus >= 202002L return std::popcount(x); #else #ifndef __clang__ return __builtin_popcount(x); #endif #endif x = (x & 0x55555555) + (x >> 1 & 0x55555555); x = (x & 0x33333333) + (x >> 2 & 0x33333333); x = (x & 0x0f0f0f0f) + (x >> 4 & 0x0f0f0f0f); x = (x & 0x00ff00ff) + (x >> 8 & 0x00ff00ff); return (x & 0x0000ffff) + (x >> 16 & 0x0000ffff); } template <class F> inline constexpr decltype(auto) lambda_fix(F&& f) { return [f = std::forward<F>(f)](auto&&... args) { return f(f, std::forward<decltype(args)>(args)...); }; } template <class T> constexpr std::vector<T> make_vec(size_t n) { return std::vector<T>(n); } template <class T, class... Args> constexpr auto make_vec(size_t n, Args&&... args) { return std::vector<decltype(make_vec<T>(args...))>(n, make_vec<T>(std::forward<Args>(args)...)); } template <class T, class U, class Stream> Stream& operator>>(Stream& ist, std::pair<T, U>& x) { return ist >> x.first >> x.second; } template <class T, class U, class Stream> Stream& operator<<(Stream& ost, const std::pair<T, U>& x) { return ost << x.first << " " << x.second; } template <class Container, std::enable_if_t<!std::is_same<Container, std::string>::value, std::nullptr_t> = nullptr> auto operator>>(std::istream& ist, Container& cont) -> decltype(typename Container::iterator(), std::cin)& { Container tmp; while (true) { typename Container::value_type t; ist >> t; tmp.emplace_back(t); if (getchar() == '\n') break; } cont = Container(std::move(tmp)); return ist; } template <class Container, class Stream, std::enable_if_t<!std::is_same<Container, std::string>::value, std::nullptr_t> = nullptr> auto operator<<(Stream& ost, const Container& cont) -> decltype(typename Container::iterator(), ost)& { for (auto it = cont.begin(); it != cont.end(); it++) { if (it != cont.begin()) ost << ' '; ost << *it; } return ost; } template <class Container> auto sum(const Container& cont) -> decltype(typename Container::iterator(), 0LL) { lint res = 0; for (auto it = cont.begin(); it != cont.end(); it++) res += *it; return res; } template <class T, class U> constexpr inline bool chmax(T& lhs, const U& rhs) noexcept { if (lhs < rhs) { lhs = rhs; return true; } return false; } template <class T, class U> constexpr inline bool chmin(T& lhs, const U& rhs) noexcept { if (lhs > rhs) { lhs = rhs; return true; } return false; } constexpr inline lint gcd(lint a, lint b) noexcept { while (b) { lint c = a; a = b; b = c % b; } return a; } inline lint lcm(lint a, lint b) noexcept { return a / gcd(a, b) * b; } constexpr bool isprime(lint n) noexcept { if (n == 1) return false; for (int i = 2; i * i <= n; i++) { if (n % i == 0) return false; } return true; } template <class T> constexpr T mypow(T a, lint b) noexcept { T res(1); while (true) { if (b & 1) res *= a; b >>= 1; if (!b) break; a *= a; } return res; } constexpr lint modpow(lint a, lint b, lint m) noexcept { a %= m; lint res(1); while (b) { if (b & 1) res *= a, res %= m; a *= a, a %= m, b >>= 1; } return res; } LP extGcd(lint a, lint b) noexcept { if (b == 0) return {1, 0}; LP s = extGcd(b, a % b); std::swap(s.first, s.second); s.second -= a / b * s.first; return s; } LP ChineseRem(const lint& b1, const lint& m1, const lint& b2, const lint& m2) noexcept { auto p = extGcd(m1, m2); lint g = gcd(m1, m2), l = m1 / g * m2; lint tmp = (b2 - b1) / g * p.first % (m2 / g); lint r = (b1 + m1 * tmp + l) % l; return {r, l}; } int LCS(const std::string& a, const std::string& b) { auto dp = make_vec<int>(a.size() + 1, b.size() + 1); rep(i, a.size()) { rep(j, b.size()) { chmax(dp[i + 1][j], dp[i][j]); chmax(dp[i][j + 1], dp[i][j]); if (a[i] == b[j]) chmax(dp[i + 1][j + 1], dp[i][j] + 1); } chmax(dp[i + 1][b.size()], dp[i][b.size()]); } rep(j, b.size()) chmax(dp[a.size()][j + 1], dp[a.size()][j]); return dp[a.size()][b.size()]; } template <class T, std::enable_if_t<std::is_convertible<int, T>::value, std::nullptr_t> = nullptr> void compress(std::vector<T>& vec) { auto tmp = vec; std::sort(all(tmp)); tmp.erase(std::unique(all(tmp)), tmp.end()); for (T& i : vec) i = std::lower_bound(all(tmp), i) - tmp.begin(); } template <class T> void compress(T* l, T* r) { std::vector<T> tmp(l, r); std::sort(all(tmp)); tmp.erase(std::unique(all(tmp)), tmp.end()); for (auto i = l; i < r; i++) { *i = std::lower_bound(all(tmp), *i) - tmp.begin(); } } template <class InputIter> void compress(InputIter l, InputIter r) { std::vector<typename InputIter::value_type> tmp(l, r); std::sort(all(tmp)); tmp.erase(std::unique(all(tmp)), tmp.end()); for (auto i = l; i < r; i++) { *i = std::lower_bound(all(tmp), *i) - tmp.begin(); } } template <class InputIter, std::enable_if_t<std::is_same<typename InputIter::value_type, std::pair<IP, int>>::value, std::nullptr_t> = nullptr> void mo_sort(InputIter l, InputIter r, int N) { const int M = std::max(1.0, std::sqrt(lint(N) * N / std::distance(l, r))); std::sort(l, r, [M](const auto& lhs, const auto& rhs) { if (lhs.first.first / M < rhs.first.first / M) return true; if (lhs.first.first / M == rhs.first.first / M) return lhs.first.second < rhs.first.second; return false; }); int before = -1, cnt = 0; bool f = false; for (InputIter i = l; i != r; i++) { if (before != i->first.first / M) { if (f) std::reverse(i - cnt, i); f ^= true, before = i->first.first / M, cnt = 1; } else cnt++; } if (f) std::reverse(r - cnt, r); } template <class T> std::vector<T> xor_bases(const std::vector<T>& vec) { std::vector<T> res; for (T i : vec) { for (T j : res) { chmin(i, i ^ j); } if (i) res.emplace_back(i); } return res; } #line 3 "data-structure/RBST.hpp" template <class T> class RBST { class Node { public: Node *left = nullptr, *right = nullptr; T value; size_t size; }; Node* root = nullptr; RBST(Node* r) : root(r) {} static ulint engine() { static ulint cur = std::clock(); cur ^= cur << 13; cur ^= cur >> 17; cur ^= cur << 5; return cur; } static size_t size(Node* trg) { return trg ? trg->size : 0; } static Node* apply(Node* trg) { trg->size = size(trg->left) + size(trg->right) + 1; return trg; } static Node* merge(Node* left, Node* right) { if (!left) return right; if (!right) return left; if (size_t(engine() % (size(left) + size(right))) < size(left)) { left->right = merge(left->right, right); return apply(left); } else { right->left = merge(left, right->left); return apply(right); } } static std::pair<Node*, Node*> split(Node* trg, int pos) { if (!trg) return {nullptr, nullptr}; if (pos <= size(trg->left)) { auto tmp = split(trg->left, pos); trg->left = tmp.second; return {tmp.first, apply(trg)}; } else { auto tmp = split(trg->right, pos - size(trg->left) - 1); trg->right = tmp.first; return {apply(trg), tmp.second}; } } static Node* insert(Node* node, int idx, const T& val) { auto tmp = split(node, idx); return merge(merge(tmp.first, new Node{nullptr, nullptr, val, 1}), tmp.second); } static Node* erase(Node* node, int idx) { auto left = split(node, idx); auto right = split(left.second, 1); delete right.first; return merge(left.first, right.second); } static Node* build(const std::vector<T>& data, int l, int r) { if (r == -1) r = data.size(); if (data.empty() || l >= r) return nullptr; int idx = engine() % (r - l) + l; return apply(new Node{build(data, l, idx), build(data, idx + 1, r), data[idx], 1}); } void clear(Node* trg) { if (!trg) return; clear(trg->left); clear(trg->right); delete trg; } public: RBST() {} RBST(const std::vector<T>& data) { this->build(data); } RBST merge(const RBST& trg) { return RBST(merge(root, trg.root)); } std::pair<RBST, RBST> split(int pos) { auto tmp = split(root, pos); return {RBST(tmp.first), RBST(tmp.second)}; } T& find(int idx) const { Node* cur = root; int cnt = 0; while (true) { if (cnt + size(cur->left) == idx) return cur->value; else if (cnt + size(cur->left) > idx) cur = cur->left; else cnt += size(cur->left) + 1, cur = cur->right; } } T& operator[](int idx) const { return find(idx); } void insert(int idx, const T& val) { root = insert(root, idx, val); } void erase(int idx) { root = erase(root, idx); } int upper_bound(int val) const { Node* cur = root; int res = 0, cnt = 0; while (cur) { if (cur->value <= val) cnt += size(cur->left) + 1, cur = cur->right; else { res += cnt; cnt = 0; cur = cur->left; } } return res + cnt; } int lower_bound(int val) const { Node* cur = root; int res = 0, cnt = 0; while (cur) { if (cur->value < val) cnt += size(cur->left) + 1, cur = cur->right; else { res += cnt; cnt = 0; cur = cur->left; } } return res + cnt; } void build(const std::vector<T>& data) { root = build(data, 0, -1); } void clear() { clear(root); root = nullptr; } int size() const { return empty() ? 0 : root->size; } bool empty() const { return !root; } }; /** * @title Randomized Binary Search Tree */ #line 4 "data-structure/RBSTset.hpp" template <class T> class RBSTset { RBST<int> rbst; public: RBSTset() {} const T& quantile(int idx) const { return rbst.find(idx); } bool contains(const T& val) const { return rbst.lower_bound(val) != rbst.upper_bound(val); } void insert(const T& val) { rbst.insert(rbst.lower_bound(val), val); } void erase(const T& val) { rbst.erase(rbst.lower_bound(val)); } void clear() { rbst.clear(); } int size() const { return rbst.size(); } bool empty() const { return rbst.empty(); } }; /** * @title Set based on Randomized Binary Search Tree */